
J. Fluid Mech. (2008), vol. 606, pp. 399–415. c© 2008 Cambridge University Press

doi:10.1017/S0022112008001985 Printed in the United Kingdom

399

Direct numerical simulation of three-dimensional
turbulent rough channels: parameterization

and flow physics

P. ORLANDI1 AND S. LEONARDI2
1Dipartimento di Meccanica e Aeronautica Università La Sapienza,

Via Eudossiana 18, 00184, Roma, Italy
2Department of Mechanical Engineering, University of Puerto Rico at Mayaguez,

Mayaguez 00680-9045 Puerto Rico

(Received 23 October 2007 and in revised form 7 April 2008)

Direct numerical simulations of the three-dimensional flow past rough surfaces with
elements of different shapes are performed to create a database. Our main interest
is in finding a new parameterization for turbulent rough flows, which, so far, has
been based on the concept of equivalent sand grain height or on the net separation
between k and d type roughnesses. The new parameterization permits us to find
a simple expression for the roughness function and the root mean square of the
normal velocity fluctuation at the plane of the crests. We also wish to find statistical
quantities characterizing the effects of the different rough surfaces: one is the ratio
between mean flow and turbulence time scales (Sq/ε), the other is the helicity density.
Passive scalar visualizations evince a reduction of the wall streak coherence, and the
absence of a signature of the rough surfaces on the passive scalar distribution. The
tendency towards a flow isotropy near the roughness has been explained also through
Sq/ε.

1. Introduction
Nikuradse (1933) in his landmark paper on turbulent rough walls, presented a large

number of measurements in pipes with walls covered by sand grain; he described in
detail, the efforts made to prepare the rough surfaces. The pattern of the surfaces had
a random character (Nikuradse 1933, p. 49 microphotograph), which is common in
several rough walls, for instance in ship hulls, or, at greater scales, on terrains such as
canopies or different kinds of vegetation. Nikuradse (1933) showed that by plotting
the friction factor versus the Reynolds number, three regimes are encountered: in the
first one, at low Re, the friction follows the law of laminar smooth walls, and does not
depend on the roughness. In the transitional regime, the friction depends on Re and
on the kind of roughness. At higher Re there is a regime where the friction depends
on the kind of roughness, and not on Re. In these conditions the flow was defined
as fully rough. This result can be of significant interest to those performing DNS
(direct numerical simulations), suggesting that the near-wall physics can be studied at
low Reynolds numbers. On the other hand, for smooth walls, expensive simulations,
such as those by del Álamo et al. (2004), permitted us to understand fully the physics
of wall turbulent flows, and its dependence on the Reynolds number. The reason
for the different behaviour between smooth and rough flows, relies on the nature of
friction; in the former, only viscous drag is present, whereas in the latter, the form
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drag prevails over the viscous drag. For rough flows, the ratio between form and
friction drag depends on the shape of the surface. In laboratory experiments, it is
difficult to separate the two effects, but in numerical experiments this can be done,
(Leonardi et al. 2003; Orlandi, Leonardi & Antonia 2006).

The weak point of Nikuradse’s (1933) experiments is the lack of reproducibility
of the rough surfaces. Schlichting (1936) criticized the lack of reproducibility: ‘One
objection to using sand roughness, as a standard, is that this type is not satisfactorily
reproducible. If, for example, instead of employing lacquer for gluing the sand to
the plates, as was done by Nikuradse, we used some other binding material, and
if the time taken for drying was chosen somewhat differently, another sand-grain
density and therefore a different resistance, would result.’ Schlichting (1936) inserted,
in the same apparatus as used by Nikuradse, three-dimensional roughness surfaces of
different shapes, for instance spheres, spherical segments, cones, long and short angle
prisms. The large impact of the Nikuradse study, influenced Schlichting to evaluate
the equivalent sand grain roughness height KS , and to express the velocity profiles in
wall units as

U+ = 8.48 + 5.75 log((y + δ)/KS), 5.75 = log10 /κ, (1.1)

giving a very good fit of the data. The velocity U was scaled with the rough
friction velocity uτR , obtained by the resistance factor λ=(dp/dx)4rh/ρU 2

b , with rh

the hydraulic radius, κ the Kármán constant, Ub the bulk velocity and (dp/dx) was
measured by pressure taps on the walls. The effective origin δ, and KS were determined
by a best fit of the data in the log region. The detailed evaluation of KS is described
by Nikuradse (1933 pp. 15, 16).

Considering the time when these experiments were performed, the results had a
significant impact. The equivalent height KS is a quantity without an exact physical
meaning, but useful and necessary for a good fit of the experimental data. On similar
grounds, several years later, for rough surfaces of simple shape, such as square or two-
dimensional rods, a classification of rough surfaces as k and d type was introduced
by Perry, Schofield & Joubert (1969). In addition, attempts were made to express the
roughness function through a combination of geometrical parameters. Waigh & Kind
(1998) collected, from the literature, measurements of 64 rough surface experiments,
covering a wide range of roughness element shapes (cubes, cylinders, cones, spheres
and hemispheres). They found two classes of roughness, but arbitrariness in the
procedure, and a lack of physics were present. We believe that it is important, as
suggested by Belcher, Jerram & Hunt (2003), to find a better parameterization for
rough surfaces, in particular for dealing with real rough flows, such as those in turbine
blades, or in micrometereological applications. In predicting real flows, turbulence
models are required, therefore, a better parameterization could be achieved through
the variables in the turbulence models, for instance the Reynolds stresses. These
statistics, at the surface of the roughness, or better near the interface between the
roughness and the flow, depend on the shape of the surface. In a laboratory, it is
difficult to measure the three velocity components, because the hot wire or the laser
beam cannot be located at the plane of the roughness crest. The measurement of
the other quantities, for instance the vorticity components and the pressure in the
inner region, are even more difficult. Understanding of all the details of the near-wall
physics relies on the DNS at low Reynolds number, but the DNS must be validated.

Orlandi et al. (2006) validated the numerical simulations by a comparison of
the pressure distribution on two-dimensional rods, with that measured by Furuya,
Miyata & Fujita (1976). Regarding the flow physics, Leonardi et al. (2003) explained
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why maximum drag is achieved for square bars at w/k = 7 (w is the separation
between the square bars, and k is the height of the elements). Moreover, Orlandi
et al. (2003) demonstrated that the normal velocity distribution on the plane of the
crests is the driving mechanism for the modifications of the near-wall structures.
The preliminary results suggested that, a new parameterization for rough flows could
be obtained by ũ′

2|w , with ũ′
i = 〈u′2

i 〉1/2. (angle brackets 〈〉 indicate averages in the
homogeneous directions and in time, and |w values at the plane of the crests). A
continuous transition between smooth (ũ′

2|w = 0) and rough walls (ũ′
2|w �=0) is then

reached, avoiding the sharp transition between k and d type rough surfaces. A
useful parameterization should lead to an expression for U+, similar to (1.1), but KS

should be substituted by a quantity with a physical meaning, for example, a quantity
controlling the near-wall vortical structures. To have wide validity, the law should be
verified for a large number of different rough surfaces; Orlandi & Leonardi (2006)
for two- and three-dimensional roughness found a very good correlation between the
roughness function �U+ and ũ′

2|w .
The roughness function introduced by Hama (1954), is based on the assumption

that for flows past rough surfaces the log-law (Clauser 1954) is also valid, but it is
shifted downward by �U+

C . The expression is

U+ = κ−1 ln(y+) + B − �U+
C . (1.2)

The distance in wall units (y+) is scaled with ν/uτR . B is a constant approximately
equal to 5.5 for channel flows, and �U+

C is the roughness function proportional to
k+, which depends on the density and shape of the roughness elements and on the
Reynolds number. The effective origin of y is at a distance d0 from the roughness
crest plane, which can be defined in several ways, as was discussed by Leonardi et al.
(2003). Perry et al. (1969), Raupach, Antonia & Rajagopalan (1991) and Jiménez
(2004) using Hama’s (1954) expression found that, for k type roughness, there is a
correlation between �U+

C and k+:

�U+
C = κ−1 ln k+ + C . (1.3)

C depends on the roughness density and on the shape of the elements. Orlandi
et al. (2006) by DNS of turbulent channel flow with square, circular and triangular
rods, used a slightly different expression for the mean velocity profile in wall units.
Instead of having an error in origin, d0, dependent on the shape of the roughness,
they imposed d0 = 0. Therefore, the effective origin of y coincides with the plane of
the crests. At this location, depending on the shape of the surface, there is a mean
velocity U0 = 〈u1〉(y = 0) �= 0. For surfaces with elements of the same height, y = 0 is
a simple assumption. For surfaces with elements of different heights (not considered
in this paper), the best choice is to take the plane, passing through the highest points.
On this plane, the averaged quantities U0, ũ′

2|w and 〈u′
2u

′
1〉|w can be obtained. With

this choice, everything discussed here is still valid. Relative to this origin, the mean
velocity in wall units is Ũ+ = (〈u1〉 − U0)/uτR . In the log-region, (1.2) becomes

Ũ+ = κ−1 ln(ỹ+) + B − �U+, (1.4)

where �U+ is different from �U+
C .

The aim of the present paper and of Orlandi et al. (2006) and Orlandi & Leonardi
(2006) is to investigate the possibility of producing a universal parameterization
of �U+ with ũ′

2|w . DNSs of flows past three-dimensional surfaces with a well-
defined shape are performed following Schlichting’s (1936) decision to insert regular
three-dimensional elements in the channel. Here, the DNSs of random surfaces
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are discarded because they require an enormous computational effort, and three-
dimensional ordered structures are sufficiently complex to generate intense normal
velocity fluctuations at the plane of the crests.

Efficient numerical tools allow us to perform DNS of flows past complex rough
surfaces, for instance, Bhaganagar, Kim & Coleman (2004) considered an egg carton
surface, where weak changes on the near-wall structures were observed, and these
remain coherent in the streamwise direction. Coceal et al. (2006) considered staggered
cubes; by free-slip conditions on the upper surface, they intended to reproduce flows
similar to those over urban roughness. In the present paper, DNSs are performed to
create a database with different kinds of roughness shapes, and in particular those
producing large ũ′

2|w . Wedges with different orientation, cylindrical protuberances,
square cubes and combinations of those have been considered, which together with
the previous data allow us to derive a useful expression for the parameterization
of the roughness function. This could be of help in theoretical considerations or in
numerical simulations with engineering turbulence closures to obtain results for real
applications.

An accurate and fast numerical method is necessary to perform simulations where
the shape of the geometry plays an important role. Orlandi & Leonardi (2006)
explained why a second-order accurate staggered finite-difference scheme (Orlandi
2000) together with an efficient immersed boundary technique (Leonardi & Orlandi
2004) was used. A brief description of the numerical method is given in the following
section.

2. Numerical procedure
The non-dimensional Navier–Stokes and continuity equations for incompressible

flows are:

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
j

+ Πδi1,
∂uj

∂xj

= 0, (2.1)

where Π is the pressure gradient required to maintain a constant flow rate, ui is
the component of the velocity vector in the i direction and p is the pressure. The
reference velocity is the centreline laminar velocity profile UP , the reference length
is the half-channel width h, hence in (2.1), t is a dimensionless time, and xi are
dimensionless coordinates. The Navier–Stokes equations have been discretized in
an orthogonal coordinate system through a staggered central second-order finite-
difference approximation. The discretization scheme of the equations is reported
in Orlandi (2000, chap. 9). To treat complex boundaries, in Fadlun et al. (2000),
the velocities were set equal to zero in the solid, and, at the points closest to the
boundary, were evaluated by linear interpolations. This assumption, for several flows
is satisfactory because, near a solid boundary, the flow physics implies an almost
linear velocity profile. An attempt was made to apply the linear interpolation to a
turbulent channel with smooth walls, and a constant flow rate was not maintained.
Leonardi & Orlandi (2004) modified the immersed boundary technique, for constant-
flow-rate turbulent-channel simulations with surfaces of any shape.

In comparison with smooth channels, at the same Re, a larger number of points
is necessary to describe the contour of the rough surface. To maintain a constant
flow rate, Π in (2.1), has to balance the friction and pressure drag. Π is evaluated
during the calculation of the right-hand side of (2.1). In a smooth channel, the
staggered conservative scheme furnishes Π by the appropriate volume normalization
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of the sum of the right-hand side of (2.1). In the presence of rough walls, after the
discrete integration of the right-hand side of (2.1) in the whole computational domain,
to account for the metric variations near the body, a correction is necessary. This
procedure requires a number of operations proportional to the number of boundary
points, and the flow rate remains constant within round-off errors. In principle, there
are not large differences in treating two- or three-dimensional geometries. However,
in the latter case, a greater memory store is necessary to define the nearest points to
the surface.

A possible criticism of the capability of the method to deal with complex
geometries is that, in contrast to methods based on a body-fitted coordinate system
(Orlandi 1989), an infinitely small resolution is required. As the latter requirement is
beyond our reach, the discrete representation of the roughness elements introduces
small-scale disturbances related to the grid size, since these disturbances are generated
at a rather small local Reynolds number, they are rapidly dissipated and therefore
are not important. The corroboration of the previous discussion was presented in
Orlandi et al. (2006) by a comparison of the pressure distribution on the rod elements
with that measured by Furuya et al. (1976). They studied the boundary layer over
two-dimensional circular rods, fixed to the wall transversely to the flow, for several
values of w/k. The results presented for numerical validation, accounted for values
of w/k =3, 7 and 15; in addition, it is important to point out that circular rods
are appropriate for numerical validation, because of the variation of the metric
along the circle. The pressure accounts for the form drag which, for these values
of w/k, overcomes the frictional drag. The numerical simulations for circular rods
were performed, at Re = UP h/ν = 4200, in a channel with one wall smooth and the
other rough. The good agreement implies that the numerical method is accurate
and can be used to reproduce the flow past any kind of surface. The agreement
between low-Re simulations and high-Re experiments (Furuya et al. 1976) implies
a similarity, in the near-wall region, between boundary layers and channel flows. In
addition, it can be asserted that, as in fully rough flows (Nikuradse 1933), a Reynolds-
number independence does exist. To our knowledge, this detailed comparison between
the pressure distribution on two-dimensional rods in rough boundary layers and in
channel flows has never been attempted.

3. Results
3.1. Parameterization of rough walls

In the present paper, results for the three-dimensional geometries together with those
for two surfaces with two-dimensional square bars with w/k = 1, one aligned with
the flow (LSB ) and the other transverse to the flow (TSB ) are discussed. The three-
dimensional roughness geometries are aligned square cubes (AC), staggered square
cubes (SC), staggered cylinders (CI), staggered transversal wedges (TT), staggered
longitudinal wedges (TL), and a combination of the last four (E4). The simulations,
except for TSB and for the smooth wall (C), were performed in a domain with
dimension L1 = 8h and L3 = 4h. Each element has a width equal to 0.2h, thus there
are 20 elements in the streamwise direction x1, and 10 in the spanwise x3 (xi are
dimensionless coordinates). The number of grid points in x1 and x3 are 400 and 200,
respectively, so each element is discretized by 10 points. In the wall normal direction
(x2), a non-uniform grid with 161 points was used; 31 of the 161 points were located
between the plane of the crests (x2 = −1) and the bottom wall at x2 = −1.2. To give
an idea of the distribution and of the resolution of the elements, Figure 1(a) shows
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C LSB TSB AC SC CI TL TT E4

uτS × 10 0.42 0.42 0.43 0.44 0.46 0.45 0.43 0.46 0.43
uτR × 10 0.42 0.46 0.49 0.61 0.70 0.74 0.59 0.85 0.74

U+
0 0.0 2.91 1.02 2.61 1.87 2.19 5.47 1.98 2.48

u′+
2 /w 0.0 0.50 0.28 0.75 0.79 0.82 0.88 0.98 0.89
k+ not 39.1 41.54 51.3 58.5 62.5 49.3 71.5 62.1

�x+ 3.6 3.91 4.15 5.13 5.85 6.25 4.93 7.15 6.21
�U+ 0.0 5.56 4.52 10.1 10.6 11.7 12.0 13.1 12.0

KS × 10 not 0.45 0.50 2.35 4.20 4.57 2.24 6.27 3.94
δ × 10 not −0.13 −0.18 −0.026 0.34 −0.68 0.52 −1.7 −1.08

Table 1. Quantities of interest from the simulations.

x3

x1

x3

x1

(a) (b)

Figure 1. Three-dimensional roughness surfaces for the case E4 with elements with different
shapes in: (a) plane (x1, x3) at x2 = −1.14, and (b) by an enlargement at x2 = −1.06.

the (x1, x3) planar view of the roughness with elements of different shape (E4). This
(x1, x3)-plane cuts the elements at a height from the bottom equal to 0.06h. The
comparison of this horizontal plane with that at 0.14h (figure 1b) gives an idea of
the shape and orientation of the wedge elements. In the enlargement (figure 1b), the
grid is superimposed to estimate the resolution around the elements. To describe
the cylindrical elements accurately, a greater resolution is required; however, the
insufficient resolution creates a geometry different from that of the square cubes and
of the wedges with sharp angles.

The Reynolds number is Re = UP h/ν = 4200, UP is the reference velocity, because
the simulations started from a laminar flow. The bulk velocity Ub =2/3UP , remains
constant when the flow becomes fully turbulent. For all roughness configurations,
the grid resolution near to the crest plane is �x+

2 < 1. At the centre of the channel,
�x+

2 ≈ 6, close to that for the other two directions. The differences among the
several configurations considered can be appreciated by comparing the quantities
in table 1; uτR is the dimensionless friction velocity of the rough surface, and uτS that
of the smooth wall. The roughness Reynolds number k+ = kuτRRe determines whether
the flow is in the fully rough regime; from these values and from the arguments of
Bandyopadyhay (1987), for two-dimensional bars, it follows that the present flows
are fully rough. KS and δ in (1.1) were obtained by a best fit of the values of U+

around U+ = 8.48. Although ũ′
2|+w and KS are not well correlated by increasing ũ′

2|+w ,
KS increases. If the profiles in figure 2(a) are plotted versus ŷ =(y + δ)/KS (the
non-dimensional distance introduced by Nikuradse 1933 and used by Schlichting
1936), figure 2(b) is obtained. The values of U+ from y = δ up to the location of
maximum velocity are plotted in this figure, showing that the profiles overlap the
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Figure 2. Streamwise velocity profiles in wall units versus: (a) the distance y = x2 +1 from the
plane of the crests, the dashed line is U+ = 8.48, (b) the dimensional distance ŷ = (y + δ)/KS ,
the dashed line is U+ = 5.75 log(ŷ) + 8.48; , C, �, LSB ; �, AC , �, SC; �, TT, �, TL, �,
CI, �, TSB , 	, E4.

line 5.75 log ŷ + 8.48 for a different extension. In figure 2(b) y is the distance from
the crest plane (x2 = −1). Taking the origin of y at the bottom wall (x2 = −1.2), as
was done by Schlichting (1936), the values of KS and δ would be different. This
is a further indication that the quantities introduced by Nikuradse (1933) (KS and
δ) do not have an exact physical meaning, but have the property of producing
a universal velocity law. By writing (1.1) also with the lengths in wall units, it
becomes

U+ = 5.55 + κ−1 ln(y + δ)+ − κ−1 lnK+
S − 2.94, (3.1)

then �U+
K = κ−1 lnK+

S −2.94 coincides with �U+
C in (1.2). A good correlation between

�U+
K and ũ′

2|+w is found, but not as good as that between �U+, in (1.4), and ũ′
2|+w ,

described in the next paragraph.
To find a parameterization for the roughness function, it is convenient to start

from (1.4), the well-accepted log-law for wall turbulent flows. Here, the virtual origin,
which has a certain degree of arbitrariness, and which depends on the kind of
surface, has been eliminated. Equation (1.4) holds for smooth walls, where, at y = 0,
U = 0, in analogy with flow past rough walls at ỹ = 0, should be Ũ =0. For the
geometries considered here, the maximum height of the elements is constant, then
ỹ = 0 at the plane of the crests is the simplest assumption. At this location, an
averaged streamwise velocity U0 does exist, and Ũ = U −U0 = 0 at ỹ = 0. In numerical
simulation, the evaluation of U0 is easy, on the other hand, in experiments, difficulties
arise in measuring between the roughness elements. A satisfactory value of U0 can
be estimated by an extrapolation of a large set of measurements in a thin region
near the plane of the crests. For the present simulations, Ũ+ versus ỹ+ is shown in
figure 3(a); the straight line is given by (1.4) with k = 0.41, B =5.5 and �U+ = 0.

The large symbols indicate the points where �U+ is calculated as the difference
between the values at these points and the corresponding values on the dashed line
(values in table 1). At low Reynolds number, the width of the log-law could be rather
short; however, figure 3(a) shows that in the present DNS the log-law is long for
a satisfactory evaluation of �U+, in fact for the rough wall, Rτ is larger than that
for the opposite smooth wall. Figure 3(a) shows that if the elements are aligned with
the flow, the velocity profile presents a mild downward shift. The roughness function
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Figure 3. (a) Velocity profiles versus the distance from the plane of the crests; (b) roughness
function versus the u′

2 r.m.s. at the plane of the crests; in (a) the legend in figure 2(a), in
(b) �, Burattini et al. (2008); 	, present; �, Leonardi et al. (2003); �, Orlandi & Leonardi
(2006); �, Flores & Jiménez (2006); �, Cheng & Castro (2002).

�U+ increases when the flow impinges on transverse rough elements; the highest
shift is found for transverse wedge elements (TT), which produce a large ũ′

2|w .
DNSs with different boundary conditions for the three velocity components at the

wall, have shown that large variations of drag and turbulence production are linked
to u′

2 variations. This has been demonstrated by Orlandi et al. (2003), showing that the
principal effects of a rough surface can be mimicked by distributions of u′

2. Whereas
Orlandi et al. (2003) used the u′

2 distribution generated by DNS of two-dimensional
square bars (Leonardi et al. 2003), Flores & Jiménez (2006) reached similar conclusions
with synthetic velocity distributions. From these observations, Orlandi et al. (2006)
and Orlandi & Leonardi (2006) presented a very good correlation of �U+ with ũ′

2|w ,
and even better with ũ′+

2 |w . The previous data are added to the present results, with
three-dimensional elements, to the results at high Re by Burattini et al. (2008), and
to one of the flows simulated by Flores & Jiménez (2006). Flores & Jiménez (2006)
used ad hoc boundary conditions for u′

2 on a smooth wall. Burattini et al. (2008)
showed that at various Re, the DNS profiles agree well with those measured in an
experimental apparatus with an equal surface roughness. The measurements were
taken by cross-wires, and it was not possible to evaluate ũ′+

2 |w , even by extrapolating
the data near the plane of the crests, therefore it was not possible to obtain the
experimental values to insert in figure 3(b). However, the good comparison between
the profiles suggests that the values of �U+ and ũ′+

2 |w should be close to those by
DNS (open squares) in figure 3(b). For three-dimensional staggered cubes, Cheng &
Castro (2002) measured mean velocity and Reynolds stress profiles with LDV, these
data were used to evaluate the roughness function in (1.4) which correlates well with
ũ′+

2 |w (figure 3b).
Figure 3(b) shows that numerical and experimental data fit well with the relationship

�U+ =B/κũ′+
2 |w . For values of ũ′+

2 |w up to 0.8, the data agree well with the linear
relationship, some disagreement is encountered at high ũ′+

2 |w . In addition, figure 3(b)
establishes a limit on the value of the roughness function, which can be estimated
as �U+≈15. An exact value can be found by performing more simulations or
experiments; however, figure 3(a) shows that, to obtain �U+ = 15 at y+ ≈ 200, U+

should be equal to 2, and, for y+ > 200, U+ should grow parallel to the log-law for
smooth walls. This profile implies a large U0 and small velocity gradients in the outer
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region, a behaviour unlikely to be encountered in practical applications. In addition,
we think that, for surfaces of practical interest, it is difficult that the flow field between
the elements produces ũ′+

2 |w > 1.5. Without a correction at high ũ′+
2 |w , (1.4) becomes

Ũ+ = κ−1 ln(ỹ+) + B

(
1 − ũ′+

2 |w
κ

)
, (3.2)

which can be useful in engineering applications. The question then is how (3.2) can
be useful when ũ′

2|w may not be known. In our opinion, the expression can be used in
several ways, but other ways are also possible. Measured mean velocity profiles may
be fitted to (3.2), to find ũ′

2|w that best reproduces the results; this is similar to how
Nikuradze’s (1.2) is used to find KS .

Often the measure of the friction velocity is difficult, therefore (3.2) could be used
to find the friction velocity uτR measuring the mean velocity and the normal to
the wall velocity r.m.s. at the crests plane. Equation (3.2) can be of greater help
in simulations: in RANS (Reynolds averaged Navier–Stokes) the Reynolds stress
equations are introduced, and often it is necessary to simulate the near-wall region
(low-Reynolds-number turbulence closures). The transport equation for the normal
stress requires boundary conditions at the plane of the crests. By assigning ũ′

2|w ,
(3.2) shows that we are mimicking a particular rough surface. The improvement with
respect to the KS approach is because ũ′

2|w enters into the system of equations. On
the same grounds, ũ′

2|w could be of help in engineering LES, to avoid the description
of the real rough surfaces, which requires a large number of grid points, especially
for three-dimensional surfaces. In these simulations, the resolved vertical fluctuations
to assign at the plane of the crests should be evaluated through (3.2).

It has been investigated whether a similar correlation between �U+ and ũ′+
3 |w

exists; for three-dimensional surfaces, the correlation is not as good as for ũ′+
2 |w .

This new parameterization suggests that profiles of statistics related to ũ′
2 account

for the complex physics of the thin layer near the plane of the crests, which in the
next section is studied by the flow structure modifications.

3.2. Flow structures of rough walls

In previous DNS and experiments, it has been observed that the roughness reduces
the structure anisotropy. The tendency towards isotropy has been quantified in several
ways, for instance by two-point correlations, or by anisotropic maps (Leonardi et al.
2004). More recently POD (proper orthogonal decomposition) was used by Sen,
Bhaganagar & Juttijudata (2007) to characterize the structures in the region near the
roughness surface. Having found that ũ′+

2 |w characterizes the rough flows it is worth
presenting the profiles of ũ′+

2 ; figure 4(a) shows that, in the near-wall region, ũ′+
2

depends on the kind of roughness elements, and differs from that of a smooth wall,
with a tendency to be almost constant with y+ near the roughness. This observation
is useful in a laboratory for evaluating ũ′

2|w from a set of measurements near the
roughness. Experimental data could complement the present findings, in fact, in
a laboratory it is easier to increase Re, to investigate whether (3.2) also holds in
practical flows. In addition, it is easier to find whether a limited value of �U+ exists
and to obtain the data for the eventual correction at high ũ′+

2 |w . Despite the flat
behaviour of ũ′

2 near the roughness, the size of the cross-wires is usually greater than
the layer where ũ′

2 is constant, as can be appreciated in Burattini et al. (2008). From
the measurements of Cheng & Castro (2002), it seems that LDV is appropriate for
measuring u′

2 as close as possible to the roughness surface.
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Figure 4. (a) Normal stress profiles and (b) the ratio between mean and turbulence time
scales versus distance in wall units; legend as figure 2(a).

The ratio between the mean flow and the turbulence time scales, indicated by Sq/ε

(S = d〈u1〉/dy, q is the turbulent kinetic energy and ε the rate of energy dissipation)
is a further quantity characterizing the structure modification. Lee, Kim & Moin
(1990) by DNS of channel and shear-layer flow disputed the old belief that the wall
structures were related to the impermeability conditions, hence to the suppression
of turbulence by the wall. Their homogeneous shear flow DNS demonstrated that
elongated structures formed, and that the two-point correlations were similar to those
in a plane channel, if an equal Sq/ε was found. When Sq/ε decreases, the structures
become similar to those in isotropic turbulence. The profiles of Sq/ε in figure 4(b)
show a reduction of the peak with respect to that of a smooth wall; the higher ũ′

2|w
is, the smaller the peak. Their maxima remain within the buffer region, where, for a
smooth wall, the streamwise vortices, those producing the turbulent kinetic energy,
are located. Figure 4(b) shows that for TSB , the values do not differ largely from
those for C, hence small modifications of the low- and high-speed streaks should be
expected, as was quantified by Leonardi et al. (2004). For the other geometries, the
Sq/ε peak reduction is a consequence of a tendency to form structures similar to
those in isotropic turbulence. These changes of the structures are later described by
visualizations of a passive scalar.

Vorticity fluctuations account for the kind of flow structure, in particular, ω′
2

represents the near-wall structures, and its contour plots are presented to show the
low- and high-speed streaks. On a smooth wall ω̃′

2 = 〈ω2′
2 〉1/2 = 0 at y =0; it increases

with y to reach a maximum in correspondence with the location of maximum
turbulent energy production. Also, ω′

1 is linked to the near-wall structures, with a
relative minimum of ω̃′

1 at y+ ≈ 5, the location of the centre of the near-wall vortices
with a mean radius of about 10 wall units. Instead of plotting the profiles of ω̃′

i , it
is more appropriate to plot dij = 〈ω′

iω
′
j 〉/ω̃′2

l , where ω̃′2
l is the enstrophy. For isotropic

turbulence dii = 1/3 (no summation), instead for smooth walls d22 tends to zero
approaching the wall, and d33 = 1 − d11 is the greatest. Figure 5(a) shows that, in the
presence of rough walls, the relative minimum of d11, at y+ ≈ 5, increases. For, TT,
strong disturbances are produced near the roughness surface, and the profile of d22

becomes fairly constant; the same value, approximately equal to 1/3, for d11 indicates
a flow isotropy in the whole channel.

To understand better the effects of the roughness near the plane of the crests, the
joint probability density functions (j.p.d.f.) between σu2 = u′

2/ũ
′
2 and σo2 = ω′

2/ω̃
′
2 have
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Figure 5. Vorticity correlations coefficients (a) d11, (b) d22 versus the distance in wall units;
legend as in figure 2(a).

been calculated. The joint p.d.f. accounts for the intermittency of the events and for
the correlation between the two quantities. The intermittency reduces if the contours
are more clustered near the origin. Figure 6(a), for the smooth wall, shows elongated
tails for σu2, and this agrees with the Kim, Moin & Moser (1987) observation that
the flatness factor for u′

2 (Fu2 = 〈u′4
2 〉/〈u′

2〉2) is greater than that of the other two
velocity components. The long tails are related to the bursting events, which for a
smooth channel, are intense, and rare. We recall that the p.d.f. of the quantities in
the abscissa and ordinate of figure 6 can be obtained by a summation in the other
direction. For transverse (TSB , figure 6b) and longitudinal (LSB , figure 6c) square bars
the probability of having a very strongly events decreases, but not as strongly as for
the three-dimensional elements. The TSB with w/k = 1 generates weak recirculating
flows, and the ejections from the cavity do not largely modify the p.d.f. of σu2 with
respect to that for a smooth wall. To corroborate the weakness of the recirculating
flow inside the square cavities of TSB , the Reynolds number RK = U0k/ν, from the
values in table 1, is RK =42, proving the formation of a weak recirculation. For LSB ,
the secondary motion, within the square bars, is stronger and the p.d.f. of σu2 has
shorter tails. The different strengths of the flows inside the LSB and TSB surfaces were
described by Orlandi & Leonardi (2006) and are not repeated here. The values of
Fu2 are given in the caption to figure 6, showing that for three-dimensional surfaces
a Gaussian distribution, typical of isotropic turbulence is obtained. In the evaluation
of the joint p.d.f., the events with σ > 6 were neglected, then the values of the flatness
factors are slightly smaller than those evaluated by accounting for all the events. For
instance, for the smooth channel, at y+ = 4.9, with the threshold (events with σ � 6)
Fu1 = 2.70, Fu2 = 5.90 and Fu3 = 2.78 were found, while accounting for all the events
Fu1 = 2.70, Fu2 = 7.90 and Fu3 = 3.93, which agree with those in figure 18(b) of Kim
et al. (1987).

A negative correlation coefficient σu2o2 = 〈u′
2ω

′
2〉/(ũ′

2ω̃2) is related to the larger
contribution of the fourth quadrants with respect to the others. For TSB , the
cancellation between positive and negative quadrants gives a small σu2o2. Although
figure 6 shows that the correlation coefficients do not largely vary, the roughness
effects are clearer on 〈u′

2ω
′
2〉. For a flat channel, Rogers & Moin (1987) found

that the total helicity (〈u′
iω

′
i〉) remains small across the whole channel. To investigate

the effects of the roughness on the total helicity, the three helicity components
in the smooth channel are compared with those for the TT roughness, the elements
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Figure 6. Joint p.d.f. of σu2 (abscissa) and σo2 (ordinate), contours with increment �= 0.004,
with the box extending from −3 to 3 evaluated at y = 0.07; (a) C, Fu2 = 5.42, (b) TSB , Fu2 = 4.24,
(c) LSB , Fu2 = 3.86, (d) AC , Fu2 = 3.34, (e) SC , Fu2 = 3.34, (f ) TL, Fu2 = 3.16, (g) TT, Fu2 = 3.19,
(h) CI, Fu2 = 3.31, (i) E4, Fu2 = 3.24.

producing the strongest ejections. Figure 7(a) shows that for smooth walls, the three
components are small, and that for TT, two of the components are large, and that
〈u′

1ω
′
1〉 remains small. Having demonstrated that 〈u′

2ω
′
2〉 is the largest component,

and that the imbalance with 〈u′
3ω

′
3〉 creates a total helicity density in the presence of

roughness, it is worth seeing how the profiles of 〈u′
2ω

′
2〉 change near the plane of the

crests. Figure 7(b) shows that this helicity component is, large for three-dimensional
staggered elements; where the flow, impinging on the front face of the elements,
produces large ∂u1/∂x1, and for incompressibility, large ∂u2/∂x2. These events do not
occur for the TSB surface, with weak recirculating regions, and for LSB and AC where
the flow remains parallel to the elements.

3.3. Flow visualizations

A passive scalar can be used to obtain a qualitative picture of the changes in the
structures; for instance, in a laboratory, flow visualizations are made by injecting
smoke or dye inside the rough elements, and from the photographs, the vorticity field
can be drawn. In the numerical simulations, the vorticity field is accessible and contour
plots in horizontal planes emphasize the differences among the three ω′

i components.
In DNS, sophisticated vortex-detection methods together with flow animations are
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Figure 7. Profiles of (a) the three helicity density components for: smooth wall (lines), TT
surface (symbols), ( , �, i =1; . . . , �, i = 2; , �, i = 3); (b) 〈u′

2ω
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2〉 (legend as

figure 2a), the vertical distance ỹ is taken from the plane of the crests and is normalized in
wall units.

often used to study the near-wall complex physics. In this paper, to give insights to
the experimentalists on what they should expect, visualizations, similar to those in
laboratories, are performed. Then, the equation for the passive scalar θ was solved

∂θ

∂t
+

∂θuj

∂xj

=
1

Re Pr

∂2θ

∂x2
j

. (3.3)

The use of the Prandtl number (Pr) implies that θ represents the temperature field cre-
ated by keeping the rough wall at a constant dimensionless temperature θR = 1 . The
opposite smooth wall has a constant temperature θS = −1. Pr = 1 is a value not too
different from the Prandtl numbers typical of water, or air. On the other hand, to re-
produce dye in water, Pr should be substituted by the Schmidt number (Sc) of O(103).
In these circumstances the simulations require large computer resources. From the nu-
merical side, the immersed boundary technique treats the passive scalar as the velocity
field, with only a small increase in memory occupancy and computational time.

To investigate more clearly the influence of the type of roughness surface on
θ ′, the plots in figure 8 were evaluated at x2 = −0.96, a distance closer to the
surface than x2 = −0.93 where the joint p.d.f.s in figure 6 were calculated. The values
of the correlation between θ ′ and the three velocity components are given in table 2.
The strong negative correlation between θ ′ and u′

1 explains why, in the photographs
taken in a laboratory, the low-speed streaks are bright and the high-speed streaks
are dark. The markers, in fact, reside for a longer time in the low-speed streaks. The
correlation between θ ′ and u′

3 is small, and the turbulent heat flux 〈θ ′u′
2〉, as well as θ̃ ′

increases when ũ′
2 increases. Therefore, three-dimensional roughness surfaces produce

an increment on the heat transfer with respect to that for a smooth wall or to that in
the presence of surfaces with two-dimensional elements.

The contours for θ ′/θ̃ ′ with θ̃ ′ = 〈θ2′〉1/2 are shown in figure 8. It should be recalled
that θ̃ ′, at a distance from the plane of the crests, depends on the kind of surface.
Figure 8(a) shows clearly the low- and high-speed streaks typical of smooth channels.
For transverse square bars (TSB , figure 8b) the streaks become shorter. Even if the
disturbances are weaker than that relative to other rough surfaces, they reduce the
length and the coherence of the near-wall structures. The proof that small disturbances
affect the structures comes from a comparison between figure 8(c), for LSB , and
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C LSB TSB AC SC CI TL TT E4

ũ′
2 × 102 0.817 2.840 2.170 4.900 5.560 6.190 5.380 8.130 6.570

θ̃ ′ × 102 0.294 0.639 0.605 1.080 1.360 1.400 0.970 1.830 1.500
−〈θ ′u′

1〉 × 102 0.882 0.924 1.380 1.120 1.110 1.070 0.848 0.853 1.010
〈θ ′u′

2〉 × 103 0.380 1.360 1.320 2.770 3.250 3.600 2.700 3.970 3.440
〈θ ′u′

3〉 × 104 0.199 0.150 1.840 −1.950 −1.900 0.065 0.324 −2.040 1.420
Fu2 7.890 4.945 5.621 3.894 3.954 3.707 3.294 3.220 3.519
Fθ 2.821 2.855 2.553 2.880 3.061 2.977 3.209 3.454 3.331

Table 2. Statistics related to θ at x2 = −0.96.

x3

x3

x1 x1

(a) (b)

(c) (d)

Figure 8. Contour plots of θ ′/θ̃ ′ with increments �= 0.6 solid positive, dashed negative:
(a) C, (b) TSB (L3 = 2πh), (c) LSB , (d) E4 (L3 = 8h).

figure 8(b) for TSB ; in figure 8(c), the streaks are barely detectable although table 2
gives similar values of ũ′

2. The reduction of longitudinal coherence increases in the
other configurations, the small differences with the TT surface suggest presenting the
contours for this geometry (figure 8d), where high positive peaks are correlated with
the strongest ejections. The common result in figure 8 is that the underlying roughness
structure is not recognizable through flow visualizations.

To have a quantitative idea of the temperature fluctuations, the p.d.f. of σt = θ ′/θ̃ ′

were evaluated at two planes, the first at x2 = −0.96 (figure 9a) and the second at
x2 = 0. (figure 9b). In both planes, the negative skew property of the fluctuations is
emphasized, which agrees with the laboratory observations that the bright regions,
corresponding to the low-speed streaks, are more elongated and visible than the dark
regions. The comparison between the two planes, far apart from each other, shows
that the differences are greater for the smooth wall than for the surfaces generating
strong ejections. This is a further indication that for three-dimensional rough surfaces
the near-wall structures are more isotropic. In table 2, the values of the flatness factors
for u′

2 and θ ′ accounting for all the events are given. The comparison between Fu2 and
Fθ supports the observation that in the thermal field, the imprinting of the different
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Figure 9. Probability density distribution for σt = θ ′/θ̃ ′ at (a) x2 = −0.96, (b) at the centre of
the channel; legend as figure 2(a).

surfaces does not occur. Further studies are necessary for a deeper understanding of
the heat transfer in the presence of rough surfaces, and in particular to separate the
contribution of turbulent heat from that of thermal conduction.

4. Conclusions
DNS results of different kinds of three-dimensional rough surfaces have been

performed, following the direction suggested by Schlichting (1936), who criticized
the decision of Nikuradse (1933) to use sand grain, because of the difficulty of
reproducibility. DNSs of surfaces with random disturbances require a large number
of grid points to account for the spatial variations; a first attempt was by Yakhot,
Grinberg & Nikitin (2005) using two-dimensional simulations of flows past randomly
shaped stenoses. This can be considered a numerical exercise, because the flow
physics in two dimensions is different from that in three dimensions. The present
numerical method can be applied to random surfaces, but it requires access to a
large number of parallel processors in supercomputer centres. The aim of the present
study is to have a robust confirmation of the validity of the parameterization of
the roughness function with ũ′

2|w . A simple expression for the velocity profiles in the
log region has been found, which can be useful in practical applications as well as
in theoretical considerations. In our work we followed Nikuradse; at that time, the
best way to understand the roughness flow physics was in a laboratory, and from
accurate measurements, he derived the relationship in (1.1) using two length scales.
This expression was often used in modelling rough flows as reported by Belcher et al.
(2003), for example, Good & Belcher (1999) described how to use the relationship in
practical problems. The present DNS allows us to derive (3.2) where, instead of two
ad hoc length scales, two well-defined physical quantities appear. We think that this
should be considered an improvement towards a roughness function parameterization.
The usefulness of the correlation in LES or RANS modelling was discussed in the
paper, and in addition we suggested how (3.2) could be used in the laboratory to
evaluate uτR from measured values of the mean velocity and of the normal r.m.s.
velocities at the crest heights.

The three components of the helicity density, which were never considered in the
context of rough flows, have been evaluated. It has been found that one component
〈u′

1ω
′
1〉 is negligible and that 〈u′

2ω
′
2〉 prevails on 〈u′

3ω
′
3〉. Therefore, the helicity density

can be considered to be a further quantity characterizing the kind of roughness. The
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helicity density was also used to characterize flows with external forces. For instance,
by rotating a pipe along the flow direction, helical structures form (Orlandi 1997),
leading to drag reduction and to helicity density increase. The drag reduction was
related to the formation of more ordered helical structures, which oscillate less than
the structures near smooth walls. In rough flows, the strong ejections (u′

2), from the
rough elements, promote large fluctuation of u′

3, with an increase in disorder and a
tendency toward isotropy. Whereas in isotropic turbulence the velocity fluctuations
have a random orientation, in rough flows the surface produces a predominant
direction along which the vorticity is aligned. The tendency towards isotropy has
been characterized by profiles of d22. Visualizations of a passive scalar lead to the
same conclusions, and in addition give insights into the complex physics of heat
transfer near rough walls. This topic requires further studies which are currently
being undertaken.

As a final comment to the large number of experimental, theoretical and numerical
studies available in the literature, we think that it is time to try to overcome and
perhaps to eliminate the characterizations of rough flows used until now. For instance,
the sharp transition between k and d type is not physical, the transition should be
smooth as shown in Leonardi et al. (2007). The parameterization with ũ′

2|w allows
the classification of any kind of geometry, by eliminating the shape of the elements.
This could be important in LES of real flows, where it is not feasible to use grids
describing the details of the rough surface. A profitable way should rely on low-Re
DNS for a large number of surfaces, to create a table, where at each surface there is
a corresponding value of ũ′

2|w and U0. This step is analogous to the Nikuradse
(1933) charts, relating the velocity profiles to the equivalent sand grain thickness. The
roughness shape could be replaced by synthetic boundary conditions, on a flat wall,
given by a constant U0 and a random distribution of u′

2 with the desired ũ′
2|w . A

subgrid model should be more effective for rough than for smooth walls, from the
observation of an increase of isotropy near the plane of the crests.
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